The myosin light chain 1 isoform associated with masticatory myosin heavy chain in mammals and reptiles is embryonic/atrial MLC1.
نویسندگان
چکیده
We recently reported that masticatory myosin heavy chain (MHC-M) is expressed as the exclusive or predominant MHC isoform in masseter and temporalis muscles of several rodent species, contrary to the prevailing dogma that rodents express almost exclusively MHC isoforms that are typically found in fast limb muscles and not masticatory myosin. We also reported that the same rodent species express the embryonic/atrial isoform of myosin light chain 1 (MLC1E/A) in jaw-closing muscles and not a unique masticatory MLC1 isoform that others have reported as being expressed in jaw-closing muscles of carnivores that express MHC-M. The objective of this study was to test the hypothesis that MLC1E/A is consistently expressed in jaw-closing muscles whenever MHC-M is expressed as the predominant or exclusive MHC isoform. Jaw-closing muscles, fast and slow limb muscles, and cardiac atria and ventricles of 19 species (six Carnivora species, one Primates species, one Chiroptera species, five marsupial species, an alligator and five turtle species) were analyzed using protein gel electrophoresis, immunoblotting, mass spectrometry and RNA sequencing. Gel electrophoresis and immunoblotting indicate that MHC-M is the exclusive or predominant MHC isoform in the jaw-closing muscles of each of the studied species. The results from all of the approaches collectively show that MLC1E/A is exclusively or predominantly expressed in jaw-closing muscles of the same species. We conclude that MLC1E/A is the exclusive or predominant MLC1 isoform that is expressed in jaw-closing muscles of vertebrates that express MHC-M, and that a unique masticatory isoform of MLC1 probably does not exist.
منابع مشابه
Masticatory (;superfast') myosin heavy chain and embryonic/atrial myosin light chain 1 in rodent jaw-closing muscles.
Masticatory myosin is widely expressed among several vertebrate classes. Generally, the expression of masticatory myosin has been associated with high bite force for a carnivorous feeding style (including capturing/restraining live prey), breaking down tough plant material and defensive biting in different species. Masticatory myosin expression in the largest mammalian order, Rodentia, has not ...
متن کاملVentricular myosin light chain 1 is developmentally regulated and does not change in hypertension.
Cardiac myosin heavy chain (MHC) isoform distribution has been shown to undergo changes during development, in response to hormonal stimuli, and during pathologic states like hypertension. We initiated a study of myosin light chain 1 (MLC1) expression in cardiac tissue to determine whether MLC1 undergoes changes similar to those seen for MHC. We isolated a full length cDNA for the predominant M...
متن کامل'Superfast' or masticatory myosin and the evolution of jaw-closing muscles of vertebrates.
There are four fibre types in mammalian limb muscles, each expressing a different myosin isoform that finely tunes fibre mechanics and energetics for locomotion. Functional demands on jaw-closer muscles are complex and varied, and jaw muscles show considerable phylogenetic plasticity, with a repertoire for myosin expression that includes limb, developmental, alpha-cardiac and masticatory myosin...
متن کاملMyosin isoform expression in dog rectus muscles: patterns in global and orbital layers and among single fibers.
PURPOSE To quantitate the distribution of myosin heavy chain (MyHC) isoforms along the global and orbital layers of dog rectus muscles and determine MyHC and myosin light chain (MLC) isoform patterns among single fibers from both layers. METHODS Serial samples of both layers of rectus muscles were prepared for gel electrophoresis. Relative amounts of each MyHC isoform in each sample were dete...
متن کاملDevelopmental regulation of myosin gene expression in mouse cardiac muscle
Expression of the two isoforms of cardiac myosin heavy chain (MHC), MHC alpha and MHC beta, in mammals is regulated postnatally by a variety of stimuli, including serum hormone levels. Less is known about the factors that regulate myosin gene expression in rapidly growing cardiac muscle in embryos. Using isoform-specific 35S-labeled cRNA probes corresponding to the two MHC genes and the two myo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 213 Pt 10 شماره
صفحات -
تاریخ انتشار 2010